Content Area: Science Unit: Unifying Themes

Grade: Grade 12 MLR Span: 9-12

MLR Content Standard: A: Unifying Themes

Students apply the principles of systems, models, constancy and change, and scale in science and technology.

*Assessment			
Unifying	MLR Performance	MSAD #54	Instructional
Themes:	Indicators 9-12	Objectives	Resources/Activities
A1 Systems	1.Students apply an understanding of systems to explain and analyze man- made and natural phenomena.	Students will:	
	 a. Analyze a system using the principles of boundaries, subsystems, inputs, outputs, feedback, or the system's relation to other systems and design solutions to a system problem. b. Explain and provide examples that illustrate how it may not always be possible to predict the impact of changing some part of a man- made or natural system. 	a1.Discuss how feedback is used to help maintain the speed of the Watt Steam engine and explain why it was more efficient than previous engines	a1.Overlays and scale models of steam engines
	system.		

A2 Models	2.Students evaluate the effectiveness of a model by comparing its predictions to actual observations from the physical setting, the living environment, and the technological world.	Students will	
A3 Constancy and Change	3.Students identify	Students will: 3 observe that constellations	3 Class Discussion
	and analyze examples of constancy and change that result from varying types and rates of change in physical, biological, and technological systems with and without counterbalances.	named thousands of years ago still fit. Also that stars can and do change and are born and die throughout time.	Star Planet Locators Overlays Computer Programs
A4 Scale	4.Students apply understanding of scale to explain phemomena in physical, biological, and technological systems.	Students will:	
	a.Describe how large changes of scale may change how physical and biological	al.use scientific notation to measure the distances in space and the mass of stellar objects	a1.Class discussion

systems work and provide examples.	
b.Mathematically represent large	
magnitudes of scale.	

Content Area: Science Unit: Skills & Traits Grade: Grade 12 MLR Span: 9-12

MLR Content Standard: **B. The Skills and Traits of Scientific Inquiry And Technological Design**

Students plan, conduct, analyze data from and communicate results of in-depth scientific investigations; and they use a systematic process, tools, equipment, and a variety of materials to create a technological design and produce a solution or product to meet a specified need.

	MLR Performance	MSAD #54	Instructional
Skills and Traits	Indicators 9-12	Objectives	Resources/Activities
B1 Skills and Traits	1. Students	Students will:	
of Scientific	methodically plan,		
Inquiry	conduct, analyze data		
	from, and		
	communicate results		
	of in-depth scientific		
	investigations,		
	including experiments		
	guided by a testable		
	hypothesis.		
	a.Identify questions,		
	concepts, and testable		
	hypotheses that guide		
	scientific		
	investigations.		
	b.Design and safely		
	conduct methodical		
	scientific		
	investigations,		
	including experiments		
	with controls.		
	c.Use statistics to		
	summarize, describe,		
	analyze, and interpret		
	results.		
	d.Formulate and		
	revise scientific		
	investigations and		
	models using logic		

DRAFT

	and evidence.		
	e.Use a variety of tools and technologies to improve investigations and communications.		
	f.Recognize and analyze alternative explanations and models using scientific criteria.	f1.discuss the differences between the Geocentric and the Heliocentric model of the solar system and discuss why the scientifically the Heliocentric won out.	f1.Class Discussion Overlays
	g.Communicate and defend scientific ideas.		
B2 Skills and Traits of Technological Design	 2. Students use a systematic process, tools and techniques, and a variety of materials to design and produce a solution or product that meets new needs or improves existing designs. a.Identify new problems or a current design in need of improvement. b.Generate alternative design solutions. c.Select the design that best meets established criteria 	Students will	
	d.Use models and simulations as prototypes in the		

DRAFT

design planning	
ucsign planning	
process	
r-00000.	
- I	
e.implement the	
nranagad dagign	
proposed design	
solution	
solution.	
f.Evaluate the solution	
. 1 . 11	
to a design problem	
and the consequences	
of that solution	
of that solution.	
D	
g. Present the problem.	
design process, and	
colution to a design	
solution to a design	
problem including	
Problem menualing	
models diagrams and	
inoucio, angranio, and	
demonstrations.	

Content Area: Science Unit: Scientific & Technological Enterprise Grade: Grade 12 MLR Span: 9-12

MLR Content Standard: **C. The Scientific and Technological Enterprise** Students understand the history and nature of scientific knowledge and technology, the processes of inquiry and technological design, and the impacts science and technology have on society and the environment.

Scientific &	MLR Performance	MSAD #54	Instructional
Technological	Indicators 9-12	Objectives	Resources/Activities
Enterprise		-	
C1	1.Students describe key	Students will	
Understandings of	aspects of scientific		
Inquiry	investigations: that they		
1 0	are guided by scientific		
	principles and		
	knowledge, that they are		
	performed to test ideas,		
	and that they are		
	communicated and		
	defended publicly.		
	a.Describe how		
	hypotheses and past and		
	present knowledge guide		
	and influence scientific		
	investigations.		
	b.Describe how scientists		
	defend their evidence		
	and explanations using		
	logical arguments and		
	verifiable results.		
$\overline{C2}$	2 Students explain how	Students will	
Understandings	the relationship between		
About Science and	scientific inquiry and		
Technology	technological design		
80	influences the		
	advancement of ideas.		
	products, and systems.		

		r	r
	a.Provide an example that shows how science advances with the introduction of new technologies and how solving technological problems often impacts new scientific knowledge.		
	b.Provide examples of how creativity, imagination, and a good knowledge base are required to advance scientific ideas and technological design.		
	c.Provide examples that illustrate how technological solutions to problems sometimes lead to new problems or new fields of inquiry.		
C3 Science, Technology, and Society	3.Students describe the role of science and technology in creating and solving contemporary issues and challenges.	Students will	
	a.Explain how science and technology influence the carrying capacity and sustainability of the planet.		
	b.Explain how ethical, societal, political, economic, and cultural factors influence personal health, safety, and the quality of the environment.		
	c.Explain how ethical,		

	societal, political, economic, religious, and cultural factors influence the development and use of science and technology.		
C4 History and Nature of Science	4.Students describe the human dimensions and traditions of science, the nature of scientific knowledge, and historical episodes in science that impacted science and society.	Students will 4. describe the differences between the Geocentric and the Heliocentric model of the solar system and the historical consequences and impact on society.	4. Class Discussion
	a.Describe and provide examples of the ethical traditions in science including peer review, truthful reporting, and making results public.		
	b.Select and describe one of the major episodes in the history of science including how the scientific knowledge changed over time and any important effects on science and society.		
	c.Give examples that show how societal, cultural, and personal beliefs and ways of viewing the world can bias scientists.		
	d.Provide examples of criteria that distinguish scientific explanations form pseudoscientific ones.		

Content Area: Science Unit: Physical Setting Grade: Grade 12 MLR Span: 9-12

MLR Content Standard: D. The Physical Setting

Students understand the universal nature of matter, energy, force, and motion and identify how these relationships are exhibited in Earth Systems, in the solar system, and throughout the universe.

Physical	MLR Performance	MSAD #54	Instructional
Setting	Indicators 9-12	Objectives	Resources/Activities
D1 Universe and Solar System	1. Students explain the physical formation and changing nature of our universe and solar system, and how our past and present knowledge of the universe and solar system developed.	Students will 1.describe the general motions of the sun, moon, planets, and the stars. 1.locate objects in the sky and distinguish between stars and planets.	Star and planet locators, overlays, computer programs such as Star Calc and Home Planet
	a.Explain why the unit of light years can be used to describe distances to objects in the universe and use light years to describe distances.	al.show how to compute how far light travels in a year with correct units.	a1.Solve problems measuring the distance to stars using the unit of light years.
	 b.Explain the role of gravity in forming and maintaining planets, stars, and the solar system. c.Outline the age, origin, and process of 	b1.use the universal law of gravitation to compute the gravitational force between planets and stars.	b1.Class Discussion
	formation of the universe as currently understood by science. d.Describe the major events that have led to our current	d1.explain how spectroscopy has lead to our understanding of the chemical composition of stars and	

	universe and the current technologies used to further our understanding.	determine whether they are approaching or going away from us. d2.show how telescopes have aided our present understanding of the universe.	
D2 Earth2 a a p h si Sa. tract c a tract a tract a tract a tract a tract a tract a tract a tract 	 2. Students describe and analyze the biological, ohysical, energy, and human influences that shape and alter Earth Systems. a. Describe and analyze the effect of solar radiation, ocean currents, and atmospheric conditions on the Earth's surface and the habitability of Earth. b. Describe Earth's nternal energy sources and their role in plate tectonics. c. Describe and analyze the effects of biological and geophysical nfluences on the origin and changing nature of Earth Systems. d. Describe and analyze the effects of human nfluences on Earth Systems. 	Students will	

D3 Matter and	3.Students describe the	
Energy	structure, behavior, and	
- 8/	interactions of matter	
	at the atomic level and	
	the relationship	
	between matter and	
	operate and	
	energy.	
	a Degemite a the attractions	
	a.Describe the structure	
	of atoms in terms of	
	neutrons, protons, and	
	electrons and the role	
	of the atomic structure	
	in determining	
	chemical properties.	
	b.Describe how the	
	number and	
	arrangement of atoms	
	in a molecule	
	determine a molecule's	
	properties, including	
	the types of bonds it	
	makes with other	
	molecules and its mass,	
	and apply this to	
	predictions about	
	chemical reactions.	
	c.Explain the essential	
	roles of carbon and	
	water in life processes	
	d Describe how light is	
	emitted and absorbed	
	hy atoms' changing	
	energy levels and how	
	the results can be used	
	to identify a substance	
	to ruentity a substance.	
	e Describe factors that	
	offect he rate of	
	anou no rate or	
	chemical reactions	
	(including	
	concentration,	
	pressure, temperature,	

and the presence of molecules that encourage interaction with other molecules).		
f.Apply an a understanding of the factors that affect the rate of chemical reaction to predictions about the rate of chemical reactions.		
g.Describe nuclear reactions, including fusion and fission, and the energy they release.		
h.Describe radioactive decay and half-life.		
i.Explain the relationship between kinetic and potential energy and apply the knowledge to solve problems.	i1.display an understanding of the laws of conservation of mass, momentum and energy.i2.explain how impulse effects the change and momentum of objects and the design of modern cars.	 i1-i2.Flash cube before and after firing, study of energy conservation with a swinging pendulum and the loop to loop roller coasters. i1-i2.Elastic and inelastic collisions using computers to gather data.
j.Describe how in energy transformations the total amount of energy remains the	jl.explain why a pendulum rises less high with each consecutive swing and why a ball rolling down a ramp does not go to the	j1-j2.Loop to loop demonstration j1-j2. Mechanical equivalent
same, but because of inefficiencies (heat, sound, and vibration) useful energy is often lost through radiation or conduction.	same height on the other side. j2.observe temperature change and heat generated with loss of PE.	of heat apparatus and mechanical hammer using computer software.
k.Apply an understanding of energy transformations to solve problems.	k1.solve problems measuring the PE, KE, and heat generated when energy changes from one form to another.	k1.Class discussion

	1.Describe the relationship among heat, temperature, and pressure in terms of the actions of atoms, molecules, and ions.	11.compute work input and output in simple machines and be able to calculate the power.12.distinguish between heat and temperature and solve heat problems.	11-19.Heat labs, expansion demos, boiling water in a vacuum, fire syringe.11-19.Class Discussion
		 13.state the law of heat and the laws of thermodynamics. 14.explain in terms of the kinetic molecular theory why boiling is a cooling process and why rapid compression is a warming process. 15.use Newton's Universal Law to solve problems and to measure the mass of planets. 16.state Archemedes', Bernoulli's and Pascal's Principles. 17.do pressure problems and discuss why we have atmospheric pressure and why it changes. 18.state Boyle's and the Ideal gas law and discuss how they relate to the kinetic molecular theory. 19.list the three methods of heat transfer and discuss why vacuum bottles work so well. 	 11-19.Overlays, computer generated graphs from labs, individuals graphs of data obtained from labs. 11-19.Do motion acceleration, and Newton's 2nd law labs using dragstrip timers and computer software. 11-19.Do a vector lab 11-19.Boyles law with computer
D4 Force and Motion	4.Students understand that the laws of force and motion are the same across the universe.	Students will	

a.Describe the contribution of Newton to our understanding of force an motion, and give examples of and apply Newton's three laws of motion and his	a1.define uniform speed, average speed, velocity, acceleration, and solve problems with correct units. a2.discuss graphs qualitatively and quantitatively.	a1-a6. Class Discussion a1-a6. Overlays, computer generated graphs from labs, individuals graphs of data obtained from labs.
theory of gravitation.	a3.do freefall problems.a4.state Newton's 3 laws and show how they apply to everyday activities.	a1-a6. Do motion acceleration, and Newton's 2^{nd} law labs using dragstrip timers and computer software.
	a5.Do vector problems and describe the difference between vector and scalar quantities	a1-a6.Ball in cup lab and Vernier projectile software.
	a6.solve projectile and circular motion problems.	a1-a6.Monkey gun demonstration
b.Explain and apply the ideas of relative motion and frame of reference.	b1.discuss when you appear to be at rest that you are really moving at whatever the earth's speed is.	b1-b2. Class Discussion
	b2.explain how you can tell the difference between constant speed and acceleration, and the different ways that one can accelerate.	
c.Describe the relationship between electric and magnetic	c1.discuss how like poles of magnets react and how unlike poles react.	c1-c3.Demo using magnets and electrostatic materials.
fields and forces, and give examples of how this relationship is used in modern	c2.discuss low like charges react and how unlike charges react.	
technologies.	c3.discuss what an inverse square relationship means.	
d.Describe and apply characteristics of	d1.describe the three types of mechanical waves and the	d1.Demos and waves on a spring lab.
waves including wavelength, frequency, and amplitude.	and frequency.	d1.Mechanical Wave Driver
		d1.Tacoma Narrows Bridge film

		d1.Standing wave lab and demos.
e.Describe and apply an understanding of how waves interact with other waves and with materials including reflection, refraction, and absorption.	e1.state the law of reflection. e2.define diffraction, refraction, and interference.	e1-e2.Demos and ripple tank lab. e1-e2.Wave labs and overlays e1-e2. Class Discussion
f.Describe kinetic energy (the energy of motion). Potential energy (dependent on relative position), and energy contained by a field (including electromagnetic waves) and apply these understandings to energy problems.	f1.discuss the particle and wave model of light and the differences between them. f2.discuss the photoelectric effect and the significance to the theory of what light is. f3.do KE and PE problems and state the law of conservation of Mechanical Energy f4.discuss the energy transformations from PE to KE to electrical, to heat, light, sound, etc.	f1-f4. Class Discussion f1-f4. Measure the wavelength of light using Young's double slit experiment and lasers.

Content Area: Science Unit: The Living Environment Grade: Grade 12 MLR Span: 9-12

MLR Content Standard: E. The Living Environment

Students understand that cells are the basic unit of life, that all life as we know it has evolved through genetic transfer and natural selection to create a great diversity of organisms, and that these organisms create interdependent webs through which matter an energy flow. Students understand similarities and differences between humans and other organisms and the interconnections of these interdependent webs.

Living	MLR Performance	MSAD #54	Instructional
Environment	Indicators 9-12	Objectives	Resources/Activities
E1 Biodiversity	1.Students describe and analyze the evidence for relatedness among and within diverse populations of organisms and the importance of biodiversity.	Students will	
	 a.Explain how the variation in structure and behavior of a population of organisms may influence the likelihood that some members of the species will have adaptations that allow them to survive in a changing environment. b.Describe the role of DNA sequences in determining the degree of kinship among organisms and the identification of species. 		
	c.Analyze the		

	relatedness among organisms using structural and molecular evidence.		
	d.Analyze the effects of changes in biodiversity and predict possible consequences.		
E2 Ecosystems	2. Students describe and analyze the interactions, cycles, and factors that affect short-term and long- term ecosystem stability and change.	Students will	
	a.Explain why ecosystems can be reasonably stable over hundreds of thousands of years, even though populations may fluctuate.		
	b.Describe dynamic equilibrium in ecosystems and factors that can, in the long run, lead to change in the normal pattern of cyclic fluctuations and apply that knowledge to actual situations.		
	c.Explain the concept of carrying capacity and list factors that determine the amount of life that any environment can		

DRAFT

	support		
	support.		
	d.Describe the critical		
	role of photosynthesis		
	and how energy and		
	the chemical elements		
	that make up		
	molecules are		
	transformed in		
	ecosystems and obey		
	basic conservation		
	laws.		
E3 Cells	3.Students describe		
	structure and function	Students will	
	of cells at the		
	intracellular and		
	molecular level		
	including		
	differentiation to form		
	systems, interactions		
	between cells and		
	their environment, and		
	the impact of cellular		
	processes and changes		
	on marviauais.		
	a.Describe the		
	similarities and		
	differences in the		
	basic functions of cell		
	membranes and to the		
	specialized parts		
	within cells that allow		
	them to transport		
	materials, capture and		
	protoing dispose of		
	proteins, dispose of		
	and move		
	b.Describe the		
	relationship among		
	DNA, protein		
	molecules, and amino		
	acids in carrying out		

	the work of cells and how this is similar		
	among all organisms.		
	d.Describe the interactions that lead to cell growth and division (mitosis) and		
	allow new cells to carry the same information as the original cell (meiosis).		
	e.Describe ways in which cells can malfunction and put an organism at risk.		
	e.Describe the role of regulation and the processes that maintain an internal environment amidst changes in the external environment.		
	f.Describe the process of metabolism that allows a few key biomolecules to provide cells with necessary materials to perform their functions.		
	g.Describe how cells differentiate to form specialized systems for carrying out life functions.		
E4 Heredity and Reproduction	4.Students examine the role of DNA in transferring traits from generation to generation, in	Students will	

	differentiating cells, and in evolving new species.		
	a.Explain some of the effects of the sorting and recombination of genes in sexual reproduction.		
	b.Describe genes as segments of DNA that contain instruction for the cells and include information that leads to the differentiation of cells.		
	c.Explain how the instructions in DNA that lead to cell differentiation result in varied cell functions in the organism and DNA.		
	d.Describe the possible causes and effects of gene mutations.		
E5 Evolution	5.Students describe the interactions between and among species, populations, and environments that lead to natural selection and evolution.	Students will	
	a.Describe the premise of biological evolution, citing evidence from the fossil record and		

evidence based on the observation of similarities within the diversity of existing organisms.	
b.Describe the origins of life and how the concept of natural selection provides a mechanism for evolution that can be advantageous or disadvantageous to the next generation.	
c.Explain why some organisms may have characteristics that have no apparent survival or reproduction advantage.	
d.Relate structural and behavioral adaptations of an organism to its survival in the environment.	